Formula Sheet For General Chemistry (Nov. 16 2007) Blinn College Learning Center

DESCRIPTION	EQUATION
Ideal gas equation	PV = nRT
Adibiatic change	PV = k
Charles' Law	$rac{V}{t}=k$
Bohr Radius	$a_0=rac{\hbar^2}{m_e k e^2}$
Radii of stable orbits in the Bohr model	$r=n^2rac{\hbar^2}{m_ekZe^2}=n^2rac{a_0}{Z}$
Van der Waals equation	$\left(P + rac{an^2}{V^2} ight)(V - bn) = nRT$
Entropy Change	$\Delta S^{\circ} = \sum S^{\circ} ext{products} - \sum S^{\circ} ext{reactants}$
Enthalpy Change	$\Delta H^{\circ} = \sum H_f^{\circ} \mathrm{products} - \sum H_f^{\circ} \mathrm{reactants}$
Gibb's Free Energy Change Defined	$\Delta G^{\circ} = \sum G_f^{\circ} ext{products} - \sum G_f^{\circ} ext{reactants}$
Gibb's Free Energy Change in Terms of Enthalpy, Absolute Temperature, and Entropy	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
Gibb's Free Energy Change in Terms of Gas Constant, Absolute Temperature, and Equilibrium Constant	$\Delta G^{\circ} = -RT \ln K = -2.303 RT \log K$
Gibb's Free Energy Change in Terms of Number of Moles, Faraday, and Standard Reduction Potential	$\Delta G^{\circ} = -n \Im E^{\circ}$
Reaction Quotient	$egin{aligned} Q &= rac{[C]^c[D]^d}{[A]^a[B]^b} \ where aA + bB & ightarrow cC + dD \end{aligned}$
Electric Current	$I=rac{q}{t}$
Cell Voltage	$E_{cell} = E_{cell}^{\circ} - rac{RT}{n \Im} \ln Q = E_{cell}^{\circ} - rac{0.0592}{n} \log Q$

Relationship between Equilibrium Constant and Cell Voltage	$\log K = rac{nE^\circ}{0.0592}$
Molar Heat Capacity at Constant Pressure	$C_p = rac{\Delta H}{\Delta T}$
Partial Pressure of a Gas	$P_A = P_{total} X_A \ where X_A = rac{moles A}{total moles}$
Total Gas Pressure as Sum of Partial Pressures	$P_{total} = P_A + P_B + P_C + \dots$
Number of Moles	$n=rac{m}{M}$
Temperature in Kelvin from Degrees Celsius Conversion	$K = ^{\circ} C + 273$
Combined Gas Law	$rac{P_1 V_1}{n_1 T_1} = rac{P_2 V_2}{n_2 T_2}$
Density of a Material	$D = \frac{m}{V}$
Root Mean Square Velocity of Gas Molecules	$u_{rms} = \sqrt{rac{3kT}{m}} = \sqrt{rac{3RT}{M}}$
Kinetic Energy per molecule	$rac{KE}{molecule} = rac{1}{2} m v^2$
Kinetic Energy per Mole	$\frac{KE}{mole} = \frac{3}{2}RTn$
Kinetic Energy per Mole	$rac{KE}{mole} = rac{3}{2}RTn$
Graham's Law of Effusion	$rac{r_1}{r_2} = \sqrt{rac{M_2}{M_1}}$
Molarity Defined	$molarity, \hspace{0.1in} M = rac{moles \hspace{0.1in} solute}{liter \hspace{0.1in} solution}$
Molality Defined	$molality, = \frac{moles \ solute}{kilogram \ solvent}$
Freezing Point Depression	$\Delta T_f = i K_f imes molality$

Boiling Point Elevation	$\Delta T_b = i K_b imes molality$
Bonning Forme End vaccion	
Osmotic Pressure	$\pi = rac{nRT}{V}i$
Specific Heat Capacity to Heat Equation	$q=mc\Delta T$
Acid Ionization Constant	$K_{oldsymbol{a}} = rac{\left[H^{+} ight]\left[A^{-} ight]}{\left[HA ight]}$
Base Ionization Constant	$K_b = \frac{\left[OH^-\right]\left[HB^+\right]}{\left[B\right]}$
Ion Product Constant for Water	$K_w = [OH^-][H^+] = K_a \times K_b$ = 1.0 × 10 ⁻¹⁴ at 25°C
pH Defined	$pH = -\log\left[H^+ ight]$
pOH Defined	$pOH = -\log\left[OH^- ight]$
pH and pOH Relationship	14 = pH + pOH
Buffer Design Equation	$pH \approx pK_a - \log \frac{[HA]_0}{[A^-]_0}$
pOH and Base Ionization Equilibrium Constant Relationship	$pOH = pK_b + \log \frac{[HB^+]}{[B]}$
pK _a Definition	$pK_a = -\log K_a$
pK _b Definition	$pK_b = -\log K_b$
Gas Pressure and Concentration Relationship	$K_{p}=K_{c}\left(RT ight) ^{\Delta n}$
Planck's Quantized (Quantum) Energy Equation	$\Delta E = h u$
Speed of Light to Wavelength and Frequency Relationship	$c=\lambda u$
De Broglie Wavelength	$\lambda = rac{h}{m v}$
Linear Momentum	p=mv
Relationship between Energy and Principal Quantum Number	$E_n = -R_H\left(rac{1}{n^2} ight) = rac{-2.178 imes 10^{-18}}{n^2} joule$

Rydberg Equation	$\Delta E = R_H \left(rac{1}{n_i^2} - rac{1}{n_f^2} ight)$
van't Hoff equation	$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^{\circ}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$